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Abstract 
Spacecraft control, state estimation, and fault-detection-and-
isolation systems are affected by unknown variations in the vehicle 
mass properties. It is often difficult to accurately measure inertia 
terms on the ground, and mass properties can change on-orbit as 
fuel is expended, the configuration changes, or payloads are added 
or removed. Recursive least squares-based algorithms that use gyro 
signals to identify the center of mass and inverse inertia matrix are 
presented. They are applied in simulation to 3 thruster-controlled 
vehicles: the X-38 and Mini-AERCam under development at 
NASA-JSC, and the S4, an air-bearing spacecraft simulator at the 
NASA-Ames Smart Systems Research Lab (SSRL). 

1. Introduction 
The mass-property identification (ID) algorithms presented here 
were developed through application to two thruster-controlled 
spacecraft presently under development at NASA Johnson Space 
Center: the X-38 [14] and the Mini-AERCam, and to the SSRL S4.  

 

 
Fig 1: X-38 (upper left), Mini-AERCam (upper right), and 

Smart Systems Spacecraft Simulator (S4) 
The goal is to identify, on-line, the mass property parameters of a 
thruster-controlled spacecraft. Specifically, the terms of the inverse 
inertia matrix and the location of the mass center are identified 
using gyro measurements during periods of thruster firing. The 
application vehicles, X-38, Mini-AERCam, and S4 are all 
exclusively thruster controlled and the derivation follows that, but 
it is a simple extension to accommodate CMGs or reaction wheels 
(as in [2]). Accelerometers would improve the ID, but gyros only 
are used, broadening the applicability of the resulting algorithm. 
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1.1 Related research 
Tanygin and Williams [9] developed a least squares (LS) based 
algorithm to identify mass properties for a spinning vehicle during 
coasting maneuvers. Bergmann, et al. [2][3][8] developed an ID 
approach using a Gaussian second-order filter [5], which resembles 
an extended Kalman filter. This is significantly more complex and 
computationally intensive than the approach presented here. Wilson 
and Rock [11][12] developed an ID method based on exponentially 
weighted RLS using accelerometer and angular rate sensors. The 
acceleration created by each thruster (reflecting both mass and 
thruster properties) was identified. A neural network then provided 
adaptive control reconfiguration to multiple destabilizing hard and 
soft thruster failures. This was implemented on a 3-degree-of-
freedom air-bearing vehicle. Wilson, et al. developed a model-
based thruster fault detection and isolation (FDI) system for the 
vehicles presented here [13]. These mass-property ID algorithms 
were developed to improve model accuracy for that system. 
 
1.2 Least-squares identification 
In this paper, vehicle mass properties are identified using LS 
methods in which the sensor data is fit to the underlying equations 
of motion (EOM) such that the identified parameter values 
minimize the squared error (where error is, for example, sensor 
data minus the ideal sensor data that would occur with zero noise 
and using the identified parameter values). 
 
The standard form for a linear least squares problem is given as 

ε+= bAx     or     bAx ≅
where  is a vector of noise-free measurements, b ε  is a vector of 
measurement noise, x  contains the parameters to be identified, and 
matrix A  contains known variables and parameters (i.e., A  is 
noise-free). The ≅  in Ax b≅  indicates that the left and right 
sides of the equation would be equal if noise were not present [6]. 
The LS ID solution, x̂ , minimizes the sum of the squares of the 
error, ˆAx b− . If the problem at hand can be put into this standard 
form, x̂  can be solved directly using a batch algorithm, 

1Tˆ ( ) Tx A A A= b− , or an exactly equivalent recursive algorithm 
[4][5][6]. Manipulating the original equations into the form 
Ax b≅  so that the standard LS solution can be solved is often the 

primary challenge, requiring careful, application-dependent 
decisions regarding approximations. 
 
The rotational EOM (derived later) contain all of the parameters to 
be identified: center of mass (CM), as represented in thruster 
location in the body frame, , and inertia. Unfortunately, these 
parameters multiply one another, and cannot all simultaneously be 
manipulated into the desired linear form, 

L

Ax b≅ . The approach 
taken here addresses this issue by segmenting the ID problem into 
two sub-problems which both allow closed form solution. 
Implementing both recursively, and with each ID solution using the 
results of the other one (with confidence checks), the ID bias due to 
coupling is minimized. 



 

2. Approach 
For the vehicle applications studied, the presence of disturbance 
torques, imperfect rate measurements, and significant pulse-to-
pulse thruster variability biased development towards one of 
minimal complexity (e.g., dropping higher order terms, segmenting 
the problem, etc.). Before going into the equations, it is useful to 
understand the basic physics behind the ID approach: 
1. The rotational EOM mathematically describe how forces and 

torques will affect rotational accelerations. The inertia matrix 
governs the acceleration that will result from an applied net 
torque, allowing LS ID of 1I − . The CM location determines 
the angular acceleration that will result from an applied force. 

2. When thrusters are fired to produce a pure torque only, the 
CM location has no effect on angular acceleration. So the CM 
ID cannot be updated using this data. Also, inertia ID will not 
be biased by an incorrect CM ID estimate. 

3. When force and torque are applied simultaneously, inertia and 
CM can each be identified individually.  

4. When no external forces or torques are applied, disturbances 
due to thruster variability are removed. With sufficiently high 
angular rates and sufficiently low sensor noise, accelerometer 
signals can be used along with the gyros to ID the CM 
location. This has been developed and implemented by the 
authors for a vehicle with relatively low sensor noise levels 
(and in [9]), and is not presented here.  

 
Specifics regarding this approach for gyro-based mass-property ID: 
• Due to the form of the EOM, the inverse of the inertia matrix 

is identified (i.e., 1Î −  vs. Î ). 
• Only the six independent elements of 1Î −  are identified. 
• 1Î −  and CM updates are made only when thrusters are firing. 
• Perfect knowledge of thruster failures and biases is assumed. 
• If pure torques occur frequently, item 2 above is followed, so 

1Î −  updates are made only when a pure torque is present 
(assuming that fewer clean data points are better than more 
noisy ones, and that the CM error would bias the estimate). 

 
3. Derivation of mass-property RLS ID algorithms 
 

In this section, the relevant EOM are derived, containing the 
measurements and parameters of interest. Then these EOM are 
manipulated into forms that allow ID, first of the mass center and 
second of the inverse inertia matrix. Once the equations are in the 
proper form, either batch LS or RLS can be implemented. 
 
3.1 Equations of motion 
Starting with Euler’s dynamical equation, and assuming the 
spacecraft inertia matrix is constant, the rotational EOM are [1]: 

))((1 ωωτω II ×−= −

−−−

, or, , or, )~(1 ωωτω II −= −
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where I  is the spacecraft inertia matrix (and 1

ijI −

( , )i j 1

 indicates the 

 element of I −

ij rather than 1/ I ), ω  is the angular velocity 

of the body-fixed frame with respect to an inertial reference frame, 
τ  is the sum of all torques on the body (thrusters, reaction wheels, 

CMGs, disturbances, etc.), and ω  is used to represent the matrix-
multiply implementation of the cross product. 

M L

random,
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The total torque, τ , about the true CM (which is not known 
exactly) due to the thrusters and torque disturbance is modeled as: 

( )thrusters disturb k disturbD Fτ τ τ= + = × +  

where , represents the net thruster moment.  and  are 
[3-by- ] matrices (  is the number of thrusters) containing the 
location and direction (a unit-vector aligned with thrust vector) of 
each thruster, measured in the body frame. Each column contains 
the information for an individual thruster, and the cross product 
operator shown here indicates that the i  column of  is crossed 
with the  column of  and entered into the i  column of the 
resulting [3-by- ] matrix. 
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kF , the thrust magnitude from each individual thruster at each 

control update, , can be expressed as the following function, 
which accounts for (in order in the equation): reduction in thrust 
due to blowdown; nominal thruster magnitude; constant random 
bias added to the nominal value; random pulse-to-pulse offset 
added to the nominal value; thruster firing (on/off). A further 
refinement in calculating 

k

kF  would be to also model the transient 
nature of the thrusters, accounting for rise, trail off, and latency.  

kkbiasnomk TFFFBF )( ++=  

B  and biasF  can be identified separately. In this analysis, the ID 

algorithm uses their nominal values ( ), but their 
true random values are used in the simulation for testing. 

1, 0biasB F= =

 
Combining the above results, the full rotational EOM reduce to 

))()()(( ,
1 ωωτω ITFFFBDLI disturbkkrandombiasnom ×−++×= −  

 
The EOM are modeled assuming that the acceleration is constant 
during each control sample period; the ID algorithms require 
acceleration estimates corresponding to these control sample 
periods. The applications presented here estimate angular 
acceleration, ω , using rate gyros [13], but any method could be 
used (e.g., using Kalman filtering, star trackers, accelerometers). 
 
3.2 Identification of the mass center  
The mass center,  (measured in the structural frame), determines 
the origin of the body frame, and thereby determines the value of 

, which contains the locations of each thruster in the body frame. 
Similarly, 

C

L
∆ , the difference between actual and nominal values of 

 determines . C L ∆  is the value that will be identified here. 
], 1 ... 1nom nomC C L L+ ∆ = − ∆  

Recalling the rotational EOM, substituting and rearranging some 
terms, and setting 0,0,1 , ==== disturbkrandombiasFB τ , 

)))((1 ωω ITFDLI knom −×= −  

[ ] knomnom TFDLII ))1...1(()( ×−=×+ ωωω  

Trying to get this equation in the form Ax b≅  with ∆  as x ,  
[ ] knomnom TFDFDLII )1...11()()( ×∆−×=×+ ωωω  



 

Since the columns of ∆  are all the same, the second 
term on the right can be regrouped. Note as a counter-example that 
the first term on the right cannot be similarly regrouped because the 
columns of  are not all the same, 

[ 1...11 ]

nomL
))(()()( knomknomnom TDFTFDLII ×∆−×=×+ ωωω  

knomnomknom TFDLIITDF )()()( ×+×−−=×∆ ωωω  
By the anti-commutative property of the cross product (that 

), the left side is changed to )( abba ×−=×

knomnomknom TFDLIITDF )()()( ×−×+=∆× ωωω  
 
The right side (the b  in Ax b≅ ) can be calculated. Introduce a 
variable,  (a 3-by-1 vector), then re-write using the 
matrix-multiply implementation of the cross-product, as 
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The measurements in this equation show up in the ω  and ω  terms 
only. The ( )Iω ω×  term is very small (and can be omitted for the 
applications studied here), so ω  is the main noise contributor. The 
LS problem is defined (and closed-form solution developed) 
assuming the measurement noise enters without pre-multiplication. 

So, pre-multiplying by 1I − , 
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The (Iω ω×  term is still pre-multiplied, but that is likely to be 
an insignificant number. So at each update, c  is 
calculated and plugged in to the above re-formulation of the 
equation of motion, which conforms to 

knomk TDF≡

Ax b≅ , where 
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3.3 Identification of the inverse inertia matrix 
ID of 1I −  is similar to that for : the rotational EOM are 
manipulated to a form as close as possible to 

∆
Ax b≅ . Recalling 

the original rotational EOM and simplifying as before, 
))()((1 ωωω ITFDLI knom ×−×= −  

ωωω =×−×− ))()((1 ITFDLI knom  

Introduce a variable, )()( ωω ITFDL knomka ×−×≡ , so 
1

kI a ω− = . The 1

kI a−  matrix-vector multiplication is converted 
into an equivalent expression where the 6 independent terms in 1I −  
appear in a vector that is pre-multiplied by a matrix. 
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So now the equation is in the standard form, Ax b≅ , where 
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For both mass-center ID and inertia ID, measurements at multiple 
time steps are combined as follows if the batch LS solution is used. 
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3.4 Deviations from standard LS ID form 
The recursive or batch LS solution, 1ˆ ( )T Tx A A A b−= , will truly 
minimize the quadratic error if the manipulated equations comply 
with the standard form, Ax b ε= + . Deviations from this form in 
the results of the preceding manipulations are that: 
1. Noisy measurements appear in the ( )Iω ω×  term in the A  

matrix. However, for the relatively slow rotational speeds in 
many spacecraft applications, this term is negligible. 

2. Other terms in A  and  are not known perfectly: , , 

, 

b L D
B biasF , etc. are all estimated or nominal values. 

3. Random variables F  and  that were set to zero do 
not appear directly in the 

,random k disturbτ
ε  term as they should. 

4. CM ID uses nominal or estimated values for I  and 1I − . 
Inertia ID uses nominal or estimated values for  (CM). L

 
Due to the form of the underlying EOM, it is not possible to exactly 
comply with the standard form. The preceding manipulations and 
approximations to the EOM were chosen for this class of 
applications, attempting to minimize the expected effects of the 
inevitable resulting deviations. With different typical values of ω , 
disturbances, sensor accuracy, actuator variability, control policy, 
etc., different formulations may be better (e.g., [9]). 
 
Also, the assumptions that acceleration is constant during each 
control update, and that thruster response time is zero will degrade 
the ID results if not compensated for. 



 

4. Simulation Results 
 

A dynamic simulation was developed using MATLAB [7] that 
included: the rotational and translational EOM; different sample 
rates for control and sensing; a thruster control system; and realistic 
variations in all relevant system parameters (mass properties, 
thruster properties and pulse-to-pulse noise, sensor noise). 
 
The accuracy of the ID results depends on the sensor noise, thruster 
variability, and variability in non-identified system parameters 
(such as thruster direction, , and bias, D biasF ). These RLS mass-
property ID algorithms have been implemented and successfully 
tested for the three dissimilar spacecraft mentioned. In this section, 
results for one, the Mini-AERCam, are presented as an example. 
 
The Mini-AERCam has 12 thrusters controlling all 6 degrees of 
freedom, and uses MEMS gyros. In this test, the system was 
excited automatically by randomly perturbing the desired position 
and attitude, causing thrusters to fire, providing both torques and 
net forces on the vehicle. 
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Fig 2: Mini-AERCam inertia-inverse ID results 

Figure 2 shows the results for ID of the inverse inertia matrix. True 
values are drawn as solid lines; ID updates are drawn as dots. Since 
pure torques are common for this vehicle, inertia ID updates occur 
only when nominally pure torques are applied – resulting in the 
gaps between updates. 
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Fig 3: Mini-AERCam mass-center ID results 

CM ID results are shown in Figure 3. As with inertia ID, the ID is 
initialized at the nominal values, which is zero in this case. CM 
information is not present when pure torques are applied, so there 
are no updates at these times (or when no thrusters fire), resulting 
in the gap between 2 and 5 seconds. In both inertia and CM ID, ID 
accuracy is better than the vehicle spec based on ground analysis 
and measurement (±5 mm for CM in this example), making the ID 
useful for on-line adaptive control. 
 
Although they are run independently in these tests, use of CM ID 
results in the inertia ID calculations (i.e., using identified instead of 
nominal CM information) and conversely would improve results. 

5. Conclusions 
Separate mass-center and inverse-inertia-matrix ID algorithms have 
been developed and applied in simulation to the X-38, Mini-
AERCam, and S4 thruster-controlled vehicles. Using gyro signals 
only, and based on recursive least squares, the algorithms reliably 
and accurately ID mass properties for these vehicles in the presence 
of several significant noise sources. The algorithms are 
computationally efficient and can be run either on-line for adaptive 
control (RLS) or off-line for post-flight analysis (batch LS). 
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